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 Bursting calcium rotors in cultu]
 GIL BUB*, LEON GLASS*t, NELSON G. PUBLICOVERt, ANI

 *Department of Physiology, McGill University, 3655 Drummond Street, Montr(
 Reno, NV 89557

 Communicated by Mitchell J. Feigenbaum, The Rockefeller University, 1

 ABSTRACT Rotating waves (rotors) of cellular activity
 were observed in nonconfluent cultures of embryonic chick
 heart cells by using a macroscopic imaging system that
 detected fluorescence from intracellular Ca2+. Unlike previ-
 ous observations of rotors or spiral waves in other systems, the
 rotors did not persist but exhibited a repetitive pattern of
 spontaneous onset and offset leading to a bursting rhythm.
 Similar dynamics were observed in a cellular automaton
 model of excitable media that incorporates spontaneous ini-
 tiation of activity, and a decrease of excitability as a conse-
 quence of rapid activity (fatigue). These results provide a
 mechanism for bursting dynamics in normal and pathological
 biological processes.

 Since early studies demonstrated that bursting rhythms could
 originate from single cells (1), theoretical analyses of bursting
 have focused on cellular ionic mechanisms (2-5). It has been
 difficult to assess what contribution spatial patterns of activa-
 tion within groups of participating cells have on the dynamics
 of a burst. This work was initiated to determine the spatial
 patterns of activation occuring in dispersed cultures of heart
 cells. Previous studies of excised slices of cardiac tissue dem-

 onstrated sustained rotors initiated by electrical stimulation
 and proposed that rotors might be a mechanism for abnormally
 rapid cardiac arrhythmias (tachycardias) (6, 7). Although
 tachycardias in people can be initiated by electrical stimula-
 tion, they usually start spontaneously. In most instances, the
 rhythms also terminate spontaneously. On occasion there is a
 repeated spontaneous paroxysmal initiation and termination
 of tachycardias (8, 9). In this paper, we demonstrate repeated
 spontaneous initiation and termination of rotors in cultured
 cardiac myocytes.

 These phenomena are modeled by using a cellular autom-
 aton. In a cellular automaton, there is a lattice of sites with
 discrete states and a synchronous updating rule that is identical
 for all sites. Cellular automata have been used as simplified
 models for a large range of phenomena, including neural
 networks (10), cardiac arrhythmias (11), oscillating chemical
 reactions (12), and forest fires (13). However, none of these
 previous formulations display the repeated onset and offset of
 rotors observed here.

 METHODS

 Cell Culture. Ventricular cells from 7-day embryonic chick
 ventricular myocytes were isolated as described (14). Cells
 were plated at just under confluent densities of 7.0-14.0 x 103
 cells per cm2 within 12-mm diameter glass retaining rings on
 lysine-coated plastic cell culture dishes. Cells were kept in
 maintenance medium 818a at 5% CO2 at 36?C for 1-2 days
 before experiments. Monolayers were loaded with calcium-
 sensitive dye fluo-3 (5 IM, Molecular Probes) (15) in Hanks'
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 balanced salt solution (HBSS, 1.3 mM K) for 25-30 min,
 washed with fresh HBSS to remove excess dye, and then
 transferred to the imaging setup. Experiments were conducted
 at 36? ? 1C.

 Fluorescent Imaging. A macroscope was constructed (16) to
 allow low light level measurements at low magnification scales
 (objective, Nikon 80 mm; imaging lens, Chiomicar Zoom 130;
 excitation filter, 460 nm; dichroic beamsplitter, 510 nm; im-
 aging filter, 540 nm). The macroscope was mounted on top of
 an inverted microscope (Zeiss Axiovert 125M) to allow for
 simultaneous monitoring of the monolayer at macroscopic and
 microscopic scales. Images were collected by using a cooled
 CCD camera (Princeton Instruments, Model TE CCD 576).
 Adjacent pixels in the CCD were binned (5 x 5), and up to
 30,000 consecutive images were transferred directly to com-
 puter (Pentium 90) for storage and analysis. Image data from
 each binned pixel are scaled based on its maximal range over
 20 frames, the image is spatially averaged, and the background
 is subtracted. The image is viewed by using custom-written
 software.

 Cellular Automaton. We adapt the Greenberg-Hastings
 model of excitable media (17, 18) to account for the physio-
 logical properties of spontaneous activity and fatigue (see
 Results).

 Each site of a two-dimensional lattice at time (t) is assigned
 a state, uij(t) and a level of fatigue O/j(t), where the subscripts
 refer to the location in the lattice. The neighborhood of a given
 site corresponds to its N nearest neighbors. The state is an
 integer: 0 is a rest state; states 1, 2, ...,. E are excited states;
 states E + 1,E + 2, ... , E + R are refractory states; and state
 (E + R + 1) is identified with the rest state 0.

 The update rule for the state of a site is as follows: if 1 I
 uij(t) < (E + R), then uij(t + 1) = uij(t) + 1. If uij(t) = 0,
 then uij(t + 1) = 0, unless one of two conditions hold: (i) the
 number of sites with an excited state at time (t) in the
 neighborhood of a site at (ij) is greater than ij(t) = 0 + ij(t),
 where 0 is a positive number indicating the threshold for
 excitation in the absence of fatigue and 4ij(t) is a fatigue term
 defined below; or (ii) {ij(t) < p, where {ij(t) is a random
 number uniformly distributed on the interval [0, 1], andp is a
 positive number representing the probability for spontaneous
 activation of a site.

 The update rule for 4ij(t) is as follows. If uij(t) = 0 and
 uij(t + 1) = 1, then cij(t + 1) = 4ij(t) + 5; otherwise 4ij(t +
 1) = y4ij(t), where y is a positive constant, 0 < y < 1. Thus,
 there is an increment of the fatigue term associated with
 excitation of a site, and exponential decay of the fatigue at
 other times.

 By settingp, 4, and 6 equal to 0, we recover the Greenberg-
 Hastings model (17, 18) of excitable systems.

 To carry out the simulations, we need to set E, R, 0, 8, y,
 p, and the neighborhood size. This is a rich array of parameters,
 and we have not systematically investigated behaviors through-
 out parameter space. For simplicity, we assume that the
 neighborhood consists of the eight nearest neighbors of a given
 site. For this neighborhood, planar wave propagation requires
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 that 0 -c 2, and we set 0 = 2. By choosing 0 at the maximum
 value that allows planar wave propagation, we increase the
 likelihood for block and the initiation of rotors. We require
 that broken wave fronts curve to generate rotors as observed
 in the experiments. With 0 = 2, rotors will form if E - 5 and
 we select E = 5. R is set equal to E + 1 = 6 to prevent a wave
 from exciting sites directly in its refractory wake. Simulations
 with the above parameters with no fatigue give a rotor with a
 period of about 36 iterations. If 4ij > 1, then site (ij) will not
 be excited by a planar wave. For these parameters, a rotor of
 period N will not persist if (1 + ) yN > 1. To obtain long burst,
 we need a slow buildup of fatigue. We arbitrarily set 8 = 0.05
 and y = 0.999 based on the above equation. The probability of
 random firing at a site is 7.5 X 10-4 per iteration. The mean
 burst time and time between bursts increases as p decreases.
 Although we report the results with this set of parameters, we
 have carried out many other simulations with the same model,
 or other variants of cellular automata models (12), and ob-
 tained similar results in all cases.

 RESULTS

 Fluorescent Imaging. Bursting dynamics were observed in
 14/17 different preparations. Fig. 1A shows fluorescent in-
 tensity over a duration of 6 min recorded from an area of 1
 mm2 in a single preparation. Six bursts of fluorescence were
 recorded. During each burst, there were distinct fluorescent
 peaks. The period between the peaks increased from 450 ms
 to 700 ms during a single burst. Fig. 1B shows the period
 recorded over six consecutive bursts plotted against time by
 using the data in Fig. 1A. The time between bursts remained
 relatively constant (40 + 15 s). Fig. 1C summarizes data from
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 FIG. 1. Dynamics of burst generation. (A) Calcium fluorescence
 for six consecutive bursts from a 1 mm2 area. (B) The interbeat period
 measured from calcium fluorescence during rotor bursting as a
 function of time. During each burst duration increases from about 0.4 s
 to 0.8 s. The interburst duration ranges from 36 s to 44 s. (C) Average
 period of rotor rotation for 24 representative rotor bursts taken from
 6 different preparations. The average period, calculated for the first
 and last five rotations of each rotor during a burst, is plotted as a
 function of burst duration. The error bars show the standard deviation

 of the period over the five averaged periods.

 Proc. Natl. Acad. Sci. USA 95 (1998)

 30 bursts recorded in 6 different preparations. The mean
 period for the first five peaks of each burst is given at time 0.
 Each dashed line represents a single burst, where the abscissa
 and ordinate of the right end point give the burst duration and
 mean period of the last five peaks, respectively. In six prepa-
 rations the mean period within a single burst increased by
 20-80%.

 To determine the spatio-temporal patterns of activity un-
 derlying the burst, fluorescent activity was recorded from a
 1-cm2 area. These recordings demonstrated the presence of a
 spontaneously initiated rotor associated with the burst (Fig. 2).
 The top trace in Fig. 2 shows a 25-s burst of increased Ca21
 recorded from a 1-mm2 region. A peak in activity is created
 every time the activation front passes through the 1-mm2
 recording region. To study the activation sequences leading to
 the initiation and the termination of the burst, contour plots
 of activation times were constructed. A wave of activity was
 spontaneously initiated (Fig. 2A) but did not propagate uni-
 formly. The wave was blocked at a point near the site of
 initiation leading to unidirectional propagation to the left.
 After the wave propagated about 2 mm (Fig. 2B), it doubled
 back, invading the previously blocked regions leading to two
 mirror-image rotors, with a common pathway in between
 them. For the initial 14 rotations, the top rotor excited the
 common pathway first (Fig. 2C). Then the top and bottom
 rotors simultaneously excited the common pathway (Fig. 2D).
 After 44 rotations, the top rotor was blocked, after which there
 remains only a single rotor (Fig. 2E). This wave was eventually
 blocked, leading to termination of the burst (Fig. 2F).

 The sequence shown in Fig. 2 was observed in 72/120 bursts.
 In another 24/120 cases, there was a similar initiation to a pair
 of mirror-image rotors, but there was no evolution to a single
 rotor before termination. In the remaining 24/120 rotor bursts,
 unidirectional propagation evolved directly to a single rotor
 and then terminated.

 Cellular Automaton. Tissue culture of embryonic chick
 myocytes display intrinsic spontaneous oscillation (14, 19). In
 addition, in many cardiac preparations (20, 21), including
 cultured cardiac myocytes (22), there is a decrease in excit-
 ability, or fatigue, caused by rapid stimulation. We model the
 dynamics observed experimentally by implementing a cellular
 automaton (see Methods). Briefly, a site can be excited,
 refractory (unable to become excited), or in a rest state (able
 to become excited). An excitable site becomes excited because
 of spontaneous activity, which we assume to be random, or by
 spread of activity from neighboring sites if a sufficient number
 of neighbors are excited at the previous time step. A site
 remains in the excited state for a constant time and then

 becomes refractory for a constant time before reaching the rest
 state.

 Waves are initiated by the chance random activation of a
 sufficient number of sites in a given neighborhood. Once
 initiated, a wave can be blocked from propagating in all
 directions, it can propagate as a broken wave in one direction,
 or it can propagate symmetrically to generate a target. Waves
 of high curvature are blocked more easily by refractory sites
 than waves of low curvature are. As high curvature activation
 fronts advance, they become less curved and less vulnerable to
 block. These properties of the model allow stable rotors to be
 generated from broken activation fronts created at initiation
 sites.

 To model fatigue, the number of active sites needed to excite
 a given site is increased as a consequence of excitation. At the
 termination of a burst, fatigue decays exponentially. Rapid
 activity results in a buildup of fatigue that reduces excitability
 of the site. Spontaneous activity was modeled by assuming a
 random excitation of sites in the rest state.

 The model shows initiation and annihilation of bursting
 rotors similar to experimental observations (Fig. 3). Impulses
 are initiated by the chance simultaneous firing of several sites
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 FIG. 2. Anatomy of a typical burst. The upper trace shows fluores
 colored images show contour plots of activation times at several dif
 constructed by determining the location of the activation front at 50-
 in a color given by the key. This format allows for the representation (
 Activation front detection is determined by a threshold set at half maxi
 site and propagates only to the left. (B) Formation of two mirror-imai
 mirror-image pair or rotors. (C and D) Contour plots of the mirror-im
 (F) Termination of the remaining rotor.

 in close proximity to each other, so that additional sites in the
 neighborhood fire. In the example shown (Fig. 3), local
 heterogeneity prevents spread of excitation in all directions,
 resulting in unidirectional propagation upward (Fig. 3A). The
 wave advances and doubles back to excite the region previously
 blocked (Fig. 3B), resulting in reentrant excitation in the form
 of two mirror-image rotors (Fig. 3C). Heterogeneity, induced
 by random firing in the model, breaks the symmetry (Fig. 3D)
 leading to a single rotor (Fig. 3E). The buildup of fatigue
 eventually makes propagation impossible and the rotor is
 annihilated (Fig. 3F). These features are similar to experimen-
 tal observations (Fig. 2).
 In the cellular automaton model, each site corresponds to

 approximately 0.1 mm2, or 7-14 cells in the biological prepa-
 ration. During the burst, the period of rotation of the rotor is
 approximately 36 iterations, so each iteration step corresponds
 to approximately 20 ms. With this scaling, the time interval
 between bursts in the cellular automaton model is about 1,000

 Proc. Natl. Acad. Sci. USA 95 (1998) 10285
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 iterations or 20 s, which is comparable experimental observa-
 tions (Fig. 1).

 DISCUSSION

 Rotors are well known from experimental (6, 7, 15, 23-28) and
 theoretical studies (11, 12, 29, 30). However, this earlier work
 does not describe the repeated spontaneous onset and offset
 of rotors that we observe here.

 The current work demonstrates bursting rotors and provides
 a mechanism for bursting behavior in diverse settings. Bursting
 arises because of local interactions of nonbursting elements.
 An alternative mechanism is that the individual cells display
 bursting dynamics and that the rotors are a secondary phe-
 nomenon. The current experiments cannot distinguish be-
 tween these two possibilities. However, by changing the pa-
 rameters in the theoretical model, other types of nonbursting
 dynamics could be observed, including localized activity with
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 FIG. 3. Simulation of a single burst in a 30 X 30 array. Contour maj
 (A) Unidirectional block. The wave is initiated from the random firing
 propagation upward. (B and C) Formation of two mirror-image rotors
 (D and E) Rotation of the mirror-image pair of rotors. The rightmosl
 the remaining rotor.

 no macroscopic wave propagation, and wave propagation in
 plane waves or target patterns. Similar dynamics were ob-
 served in the cultured myocytes as the plating densities and
 media conditions were modified. The current parameters in the
 model were selected to demonstrate the feasibility of obtaining
 bursting dynamics in a model with elements that do not burst
 themselves.

 These results should be applicable to cardiology where the
 paroxysmal onset and offset of reentrant cardiac arrhythmias
 presents significant clinical management problems (8, 9).
 Other potential applications involve bursting in neural systems
 (31, 32) and in pancreatic 3 cells (33), but more work is needed
 to determine the actual patterns of spatio-temporal activation
 in these systems. The current work underscores the delicate
 factors that lead to the stabilization and destabilization of

 rotating waves of activity independent of external interven-
 tions. Moreover, because biological systems are spatially ex-
 tended, patterns of spatial activation must necessarily be
 investigated before the mechanism of bursting behavior can be
 assessed.

 We thank Johanne Ouellette for expert technical assistance with
 the biological preparation and A. T. Winfree and N. Kopell for
 helpful comments. This work has been supported by funds from the
 Medical Research Council (Canada), the Heart and Stroke Foun-
 dation (Quebec), the Natural Sciences Engineering and Research
 Council (Canada), Fonds pour la Formation de Chercheurs et l'Aide
 a la Recherche (Quebec), and the National Institutes of Health
 (USA).
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 rotor dominates and the leftmost rotor dies out first. (F) Termination of
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